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This paper proposes a new physical method for the partial solution of the

crystallographic phase problem by illuminating the crystal with an X-ray beam

of limited coherence. The diffraction spots broaden and, if the coherence length

of the incident beam is small enough in all three dimensions, the diffraction

pattern becomes continuous. Independent information about the structure is

then available both at the Bragg angles and at angles that do not satisfy the

Bragg conditions. Under certain conditions, the total information is suf®cient to

solve the crystal structure ab initio. Two prescriptions for producing X-ray

beams with limited coherence are given.

1. Introduction

When monochromatic coherent X-rays are diffracted from

ideal crystals, diffracted beams are observed at discrete angles

that satisfy the Bragg condition. Their intensities can be

measured but their phases cannot. Re¯ection amplitudes with

different phases correspond to different structures. Therefore,

in general, a crystal structure cannot be recovered uniquely

from its diffraction pattern alone. This is the well known phase

problem of crystallography. The phase problem was expressed

very clearly by Sayre (1952) in terms of information theory:

the intensities of the diffraction pattern of a crystal, by

themselves, do not contain enough information to determine

the electron density of the crystal uniquely. In this paper, I will

show that a continuous diffraction pattern is produced if a

crystal is illuminated by an X-ray beam with small coherence

length. Independent information about the structure is

therefore available both at the Bragg angles and at angles that

do not satisfy the Bragg conditions. Under certain conditions,

the total information is suf®cient to solve the crystal structure

ab initio.

The plan of the paper is as follows. I start with a brief survey

of some of the existing methods to obtain and to use additional

information for the solution of crystal structures. Still in this

Introduction, I will show the plausibility of my proposal, by

way of its analogy to some holographic techniques. As the

thesis of the paper is far from obvious, I will try to give a fairly

detailed theoretical background. In the main part of the paper,

I start with a rather pedantic derivation of the formulae for the

diffraction of partially coherent X-rays on crystals. Then I

discuss two methods to produce incident X-ray beams with the

required (lack of) coherence. As these two sections are rather

unfamiliar to many readers, I will try to de®ne clearly what

is meant by coherence in space and time. I follow with a

discussion of the `solution of the phase problem' from three

different points of view. I will try to clarify the connection

between uniqueness of the solution of the crystal structure and

adequate sampling of the diffraction pattern from a holo-

graphic point of view, and I will ®nish with some practical

recovery methods. In the discussion section, I will recapitulate

the main arguments and try to convince the reader that the

main results of the paper can also be derived from a point of

view that is more familiar to crystallographers.

The proposed new method will make a crystal give up more

of its secrets. It is my conviction that reliable direct experi-

mental information is the most important ingredient in

advancing our understanding of dif®cult problems in crystal-

lography.

1.1. Background

Over the years, crystallographers have developed `physical'

and `non-physical' methods to solve the phase problem

(Woolfson & Fan, 1995). Physical methods attempt to collect

suf®cient independent experimental information about a

crystal, while non-physical methods utilize external or a priori

information.1 The most important physical methods are

multiple isomorphous replacement (MIR) and multi-

wavelength anomalous dispersion (MAD). The ®rst is based

on measuring the diffraction patterns of closely related

1 Some other methods in crystallography do not ®t neatly into the above
categories. The most basic a priori information is the non-negativity of the
electron density. In addition, one can use the relative ¯atness of the electron
density in parts of the crystal occupied by disordered solvent and a partial
knowledge of the molecule (molecular replacement). For the purposes of this
paper, their discussion is not needed. I would like to mention, but not discuss
in detail, three more physical methods. One is based on multiple-beam
re¯ections that determine the absolute phases of triplet invariants (Weckert &
HuÈ mmer, 1997, and references ). The other two are the happenstances of non-
crystallographic symmetry and the crystallization of the same molecule in two
different space groups. Both of the latter give (independent) information on
the amplitudes of the molecular diffraction pattern in additional directions.



structures. The second utilizes the fact that, near its X-ray

absorption edge, the scattering amplitude of an atom depends

on the incident wavelength. The pioneering non-physical

methods, known as direct methods, use atomicity together

with non-negativity of the electron density. They are based on

the fact that, at high resolution, there are many more re¯ec-

tions in the diffraction pattern of a crystal than the number of

atoms whose positions we are trying to recover and that those

atoms occupy only a fraction of the crystal volume. Therefore

there is enough information to ®nd the atom positions. The

most useful and widespread non-physical method exploits

chemical information: in most cases, the compositions of the

molecules in the crystal are known and the crystallographer

builds a molecular model that agrees with the known bond

lengths and angles as well as with the measured diffraction

intensities.

This paper will refer often to the connection between

holography and X-ray crystallography (Tollin et al., 1966;

SzoÈ ke, 1993; SzoÈ ke et al., 1997). In order to describe that

connection clearly, I will assume now that part of the electron-

density structure in the unit cell of a crystal is known and an

X-ray diffraction experiment is carried out. The wave

diffracted from the known part can then be viewed as a

holographic reference wave and the wave diffracted from the

unknown part of the unit cell can be viewed as the holographic

object wave. The resultant diffraction pattern contains, in

addition to the sum of the intensities of the reference wave

and the object wave, an interference term that is analogous to

a hologram. Because the incident X-ray beam is coherent over

many unit cells, the waves scattered from different unit cells

also interfere with one another. The result is a sampling of the

diffraction pattern at discrete diffraction angles that satisfy the

Bragg condition. The sampling is sparse enough that the

unknown scatterer cannot be reconstructed uniquely from the

hologram (Sayre, 1952; Bricogne, 1992). This is, obviously, a

restatement of the phase problem of X-ray crystallography in

terms of holography.2

1.2. Methods to obtain continuous diffraction patterns

Let us imagine a collection of well aligned molecules that

are disordered in their positions. One possible example would

be a molecular gas whose molecules are all oriented the same

way (possibly by the application of an electric or magnetic

®eld). A more practical example would be a crystal in which

each position is occupied by one or the other of two similar

molecules at random (SzoÈ ke, 1999). If a monochromatic X-ray

or electron beam is incident on such a crystal, we obtain a

discrete (Bragg) diffraction pattern and a continuous (diffuse)

one. The Bragg diffraction is that of the average crystal and

the diffuse pattern is that of a single `difference' molecule. The

latter can be measured at any diffraction angle: there are no

Bragg conditions to satisfy and the interference terms among

different molecules average out to zero (SzoÈ ke, 1986, 1997,

1999).3 Earlier, Saldin & de Andres (1990) proposed that a

diffuse diffraction pattern can be obtained when low-energy

electrons illuminate a crystalline surface that has relatively

few atoms adsorbed on it. They pointed out that the resulting

diffuse low-energy electron diffraction pattern is a hologram

and, indeed, it has been observed experimentally and recon-

structed successfully by holographic methods (Saldin, 1997).

The main purpose of this paper is to show that a similar

situation arises in ordinary crystals when the incident X-ray or

electron beam is only partially coherent. The diffraction
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Figure 2
Geometry for propagation of mutual coherence.

Figure 1
Scattering geometry.

2 The origins of this paper stem from my previous work on holographic
microscopy with an internal source of radiation (SzoÈ ke, 1986), where some of
the important conclusions of this paper were also presented without detailed
proof. I proposed that X-rays or photoelectrons emitted by an excited atom
are analogous to a reference wave in holography. If the emitting atom is
surrounded by other atoms, as in a crystal, part of the reference wave scatters
from the surrounding atoms. The scattered waves are analogous to the object
wave in holography. When these two waves arrive at a distant screen, their
interference term is analogous to a hologram (GaÂbor, 1948, 1949). Moreover,
in a crystal there are many identical emitters in different unit cells surrounded
by identical environments, each one producing a similar hologram. The waves
emitted by different excited atoms in the crystal are incoherent. The result is
that the hologram intensity recorded on the distant screen is the sum of the
intensities produced by each emitter alone. This results from a statistical
cancellation of all interference terms among the waves emitted by different
atoms. Such holograms have been observed both with electrons (see e.g.
Saldin, 1997) and with X-rays (Tegze & Faigel, 1996; Gog et al., 1996). Several
algorithms have been used successfully to recover the three-dimensional
structure of the emitting atoms' environment. I should mention some of
the important properties of internal-source holograms that enable atomic
resolution images in three dimensions. The most important property is that
the wavelength of the emitted radiation is short and it is feasible to record the
hologram on the full sphere. Second, the emitter and the scatterer are at
atomic distances from each other. This provides stability, magni®cation, a
much relaxed need for coherence of the source and no resolution limitation
on the recording medium. (All the above are problematic in `conventional'
holography.) Third, the hologram records only the immediate vicinity of the
emitter. Therefore, it is insensitive to long-range order in the crystal. Its main
disadvantage is the very low contrast (signal level) of the hologram. There
are two important differences between holographic microscopy and X-ray
crystallography. First, the interference terms among the individual holograms
average to zero. Second, there is enough information in a single hologram to
reconstruct the scattering object (albeit possibly with some ambiguity).
3 In 1975, in collaboration with A. Hawryluk, I performed model-based
experiments that verify this assertion, but they were never published.
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pattern produced by each coherence volume is incoherent

with the diffraction pattern produced by any other coherence

volume. Therefore, the diffraction pattern of the whole crystal

is their incoherent sum. The angular distribution of the

diffraction pattern is that of a single coherence volume, but its

total intensity is characteristic of the whole crystal.

In summary, I know of three different ways to produce a

continuous diffraction pattern of molecules. The ®rst type of

diffraction pattern is the X-ray hologram produced by inde-

pendently emitting atoms in a crystal (as discussed in the

footnote to x1.1). The second one is produced by X-rays

incident on a translationally disordered ensemble of well

oriented molecules. The third one is produced when partially

coherent X-rays irradiate a well ordered crystal. Each one of

them is the incoherent sum of identical interference patterns

produced within a small neighborhood, and therefore the

damage is distributed over all the molecules. Each one of them

has enough information to recover the scatterer uniquely

(within some limits) and each one can be reconstructed, or

`solved' by its analogy to holography. The ®rst two scenarios

have been discussed previously (SzoÈ ke, 1986, 1997, 1999). In

this paper, I discuss the third scenario.

2. A simple explanation

In view of the rather weighty mathematics that follow, I will try

to give now some simple explanations and then point out some

important distinctions between present-day practice and the

proposed new method.

Suppose we could concentrate our X-ray beam so as to

illuminate a single unit cell of a crystal. The diffraction pattern

observed would obviously be that of a single unit cell: a non-

periodic electron density (Miao et al., 1999; Neutze et al.,

2000). Now, let us irradiate a different unit cell with another

beam from a different source. As the two sources are

completely independent, the intensity of the two diffraction

patterns is the sum of the intensities of the individual

diffraction patterns. The essence of my proposition is the

following: if the two unit cells are illuminated by the same

beam, even though the amplitudes and phases of this beam

vary independently in the two unit cells, the same thing

happens.

In contrast, if a monochromatic X-ray beam is focused

(mildly) onto a crystal, a Bragg diffraction pattern is observed.

Note that the focused X-ray beam has a transverse coherence

length of �=�NA�, where (NA), called the numerical aperture,

is roughly the convergence angle of the incident X-ray beam

(in radians). The transverse coherence length can often be less

than the transverse dimensions of the unit cell. Alternatively,

suppose now that we shine a parallel X-ray beam of wide

spectral width onto a crystal. I just described a Laue diffrac-

tion experiment. The longitudinal coherence length of the

incident beam is the X-ray wavelength � divided by the frac-

tional bandwidth, ��=�, of the incident radiation. In many

Laue diffraction experiments, the longitudinal coherence of

the incident radiation is much shorter than the unit cell. It is

clear that we need both the short parallel coherence length of

the focused beam and the short longitudinal coherence length

of the non-monochromatic beam to obtain what we want!

3. Diffraction of partially coherent electromagnetic
waves

In this section, we will derive the formulae for the scattering of

partially coherent X-rays on crystals. The central results are

equations (18) and (22). They establish the theoretical basis of

our claims.

It has been realized for many years that some properties of

scattered radiation are in¯uenced by spectral and coherence

properties of the incident electromagnetic waves (Mandel,

1969; van Kampen, 1969). We will follow the paper by Wolf &

Foley (1989), summarized by Mandel & Wolf (1995).

X-ray scattering in a crystal occurs because its electron

density varies in space and time. The incident radiation

induces a current in the scattering material or, equivalently, a

change in its polarization density. As the incident X-ray ®eld is

weak, static and dynamic properties of the crystalline scatterer

are not in¯uenced by it. This is called the linear-response

approximation (Fetter & Walecka, 1971). Under these

conditions, the response of the material, as well as the

amplitude of the scattered wave, can be derived from ®rst

principles of quantum electrodynamics.

3.1. Scattering theory

The scattering process can be described equally well by

classical electrodynamics with a phenomenological linear

susceptibility. We will assume that the material is non-

magnetic and non-conducting. The polarization induced in the

material will be denoted by P�r; t�, where r is the coordinate of

the scatterer and t is the time of observation. It is proportional

to the electric ®eld of the electromagnetic radiation at an

earlier time, E�r; t ÿ ��. Their ratio is called the linear

susceptibility ��r; t; ��.4 The explicit time dependence of the

susceptibility, denoted here by t, signi®es the time dependence

of the crystal structure as a result of its thermal motion. The

susceptibility also depends on the time delay, � � 0, between

the action of the electric ®eld and the observation time t of the

polarization caused by it. The constitutive relation of the

material can then be written as (Wolf & Foley, 1989)

P�r; t� � 1

2�

Z1
0

d� ��r; t; ��E�r; t ÿ ��: �1�

The susceptibility of crystals is generally a second-order tensor

for visible light. For X-rays, a scalar � is suf®cient (although it

is advantageous to allow it to be a complex number). The two

separate time dependencies of ��r; t; �� can be clari®ed by

applying to it a double Fourier transformation:

4 In the ®rst 18 equations we use real notation.



�̂�r;X;!0� �
1

�2��2
Z1
ÿ1

dt exp�iXt�
Z1
0

d� ��r; t; �� exp�i!0��:

�2�
It can be shown, using (2), that the time dependence of the

crystal structure produces scattered waves at frequencies

!0 �
 around the incident frequency !0: they are called

Brillouin and Raman components (Berne & Pecora, 1976). It

is also apparent that the time delay � is important only when

there is a strong !0 dependence of � within the frequency

spectrum of the incident light. This can occur when the inci-

dent electric ®eld frequency is close to a material resonance

(e.g. an ionization edge).

If equation (1) is substituted into Maxwell's equations, the

wave equation for the scattered ®eld can be obtained. We

refer to the books of Born & Wolf (1980, x2.2.2 ) or Jackson

(1975, x9.7 ). Equation 9.100 of Jackson can be written as

rrr2D�r; t� ÿ 1

c2

@2D�r; t�
@t2

� ÿ4�rrr � �rrr � P�r; t��; �3�

where D is the displacement vector, related to E by

D�r; t� � E�r; t� � 4�P�r; t�: �4�
We introduce now the Hertz vector, P, which is related to D
by

D�r; t� � rrr � �rrr �P�r; t��: �5�
A formal solution of (3) can be obtained as the volume inte-

gral of the retarded Green's function

P�r; t� �
Z
V

P�r0; t ÿ jrÿ r0j=c�
jrÿ r0j dr0; �6�

where the three-dimensional integral dr0 is over the scattering

volume, V. In the following, we will distinguish between the

scattering region by using r0 for its coordinates and r for the

coordinates of the region of observation.

The set of integral equations (1)±(6) is similar to the

Lippmann±Schwinger equations in quantum scattering theory

(Newton, 1982). Their solutions have to satisfy scattering

boundary conditions. Namely, at t!ÿ1 there is only an

incident wave and at large distances from the scatterer the

solution consists of the original incident wave and a scattered

wave that has only outgoing components.

3.2. Scattering of partially coherent X-rays on crystals

We now develop an expression for the scattered intensity,

following Wolf & Foley (1989), but using a time-dependent

formalism. First, we assume that the spectrum of the incident

(and scattered) X-rays is narrow. The incident ®eld, E�i��r0; t�,
is then characterized by a center frequency !0 and an asso-

ciated wavevector of magnitude k0 � !0=c.

Second, we assume that the incident spectrum is far enough

from any material resonance that the time delay of the

material response can be neglected. Then (1) simpli®es to

P�r0; t� � ��r0; t; 0�E�r0; t�: �7�
Third, we assume that the scattering is weak. Then the

equations can be solved in the ®rst Born approximation.

The ®eld in (7) that induces the polarization is the incident

®eld E�i��r0; t�. If the substitution of the incident ®eld for

E�r0; t� is not made in (6), the full dynamical theory of

Laue follows. The Hertz vector from (6) gives the scattered

®eld

P�r; t� �
Z
V

��r0; t ÿ jrÿ r0j=c; 0�E�i��r0; t ÿ jrÿ r0j=c�
jrÿ r0j dr0:

�8�
Fourth, we assume that the size of the scatterer is much

smaller than the distance to the screen where we make our

observations: jr0j � jrj. This is the `far ®eld' approximation.

We remind the reader that primed coordinates are in the

scattering volume, V, and unprimed coordinates denote the

screen, where the scattered ®eld is observed. As seen in Fig. 1,

the distance can be approximated as jrÿ r0j ' rÿ r0 � ŝ; here ŝ

is a unit vector in the direction of the scattered wave r, r � jrj
and r0 � ŝ denotes the scalar product of the two vectors.

(Therefore, r � rŝ.) In the denominator, the cruder

approximation jrÿ r0j ' r can be used. Furthermore, we

de®ne

t0 � t ÿ r=c; �9�
the average retarded time at the scatterer. This gives

P�r; t� � 1

r

Z
V

��r0; t0 � r0 � ŝ=c; 0�E�i��r0; t0 � r0 � ŝ=c� dr0: �10�

The scattered ®eld can be calculated from (5):

D�s��r; t� � rrr �
"
rrr � 1

r

Z
V

��r0; t0 � r0 � ŝ=c; 0�

� E�i��r0; t0 � r0 � ŝ=c� dr0
#
; �11�

where rrr � �rrr � �� operates on r.

Fifth, we assume that near the screen there is no dielectric

medium; therefore, D�s��r; t� � E�s��r; t�. From the narrow-

band and far-®eld approximations, it follows that

rrr � �rrr � �� ' k2
0 ŝ� �ŝ� ��;

where k0 is the magnitude of the wavevector at the center

frequency of the incident electromagnetic waves: k0 � !0=c.

In summary,

E�s��r; t�

� k2
0

r

Z
V

��r0; t0 � r0 � ŝ=c; 0� ŝ� �ŝ� E�i��r0; t0 � r0 � ŝ=c� dr0�:

�12�
Our sixth assumption is that we measure the total intensity

of the (narrow-band) scattered waves at the screen and
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not its spectral distribution.5 The time-dependent intensity is

given by

I �s��r; t� � �c=4��jE�s��r; t�j2

� c

4�

k4
0

r2

Z
V

dr0
Z
V

dr00
ÿ
��r0; t0 � r0 � ŝ=c; 0�

� ��r00; t0 � r00 � ŝ=c; 0�fŝ� �ŝ� E�i��r0; t0 � r0 � ŝ=c��g
� fŝ� �ŝ� E�i��r00; t0 � r00 � ŝ=c��g�: �13�

The dependence of this expression on the polarization of the

incident radiation can be simpli®ed by repeated use of the

vector identity

�A� B� � �C�D� � �A � C��B �D� ÿ �A �D��B � C�
among the arbitrary three-dimensional vector, A, B, C and D.

The relations are applied to combinations of the vectors ŝ and

E�i�. The notation can be further simpli®ed by introducing the

Cartesian components sn and E �i�n of ŝ and E�i�, respectively:

I �s��r; t�

� c

4�

k4
0

r2

X3

m�1

X3

n�1

�
��mnÿ smsn�

�
Z
V

dr0
Z
V

dr00
h
��r0; t0 � r0 � ŝ=c; 0� ��r00; t0 � r00 � ŝ=c; 0�

� E �i�m �r0; t0 � r0 � ŝ=c�E �i�n �r00; t0 � r00 � ŝ=c�
i�
: �14�

Our seventh assumption is that the scattered intensity is

integrated over times that are long with respect to the corre-

lation time of the thermal motion in the crystal and the

correlation time of the incident radiation. Our eighth

assumption is that the ¯uctuations in the thermal motion of

the crystal and those in the X-ray emission are uncorrelated.

These allow us to de®ne the time-averaged intensity and to

decompose the time average of the integrand in (14) into the

product of those of the susceptibility and of the incident

waves:

hI �s��r; t�i � lim
T!1

1

T

Zt

tÿT

I �s��r; �� d�

� c

4�

k4
0

r2

X3

m�1

X3

n�1

�
��mn ÿ smsn�

�
Z
V

dr0
Z
V

dr00
�h��r0; t0 � r0 � ŝ=c; 0� ��r00; t0 � r00 � ŝ=c; 0�i

� hE �i�m �r0; t0 � r0 � ŝ=c�E �i�n �r00; t0 � r00 � ŝ=c�i��; �15�

where the ®rst equality de®nes the time average h�i.

Our ninth assumption is that both the thermal motion and

the incident radiation are stationary random processes, at least

in the wide sense (Papoulis, 1991). Accordingly, the time

averages depend only on the difference between the two time

arguments in the expressions.

The two factors in the double integral in equation (15) have

well established names and meanings. We will ®rst introduce

the notation and discuss them in detail in x3.3. The ®rst factor

is called the (generalized) Van Hove correlation function for

the susceptibility of the crystal:

G�r0; r00; T� � h��r0; t; 0� ��r00; t � T; 0�i: �16�
The other factor, hE �i�m ���E �i�n ���i, is the time-averaged correla-

tion function of the incident electromagnetic ®eld, measured

at two different points and two different times. It is de®ned in

books by Born & Wolf (1980, ch. X) and Goodman (1985, chs.

5 and 7). It is called the mutual-coherence function. We use

the notation

ÿ �i�m;n�r0; r00; T� � hE �i�m �r0; t�E �i�n �r00; t � T�i: �17�
Using these de®nitions, (15) can be written as

hI �s��r; t�i � c

4�

k4
0

r2

X3

m�1

X3

n�1

�
��mn ÿ smsn�

�
Z
V

dr0
Z
V

dr00G�r0; r00; �r0 ÿ r00� � ŝ=c�

� ÿ �i�m;n�r0; r00; �r0 ÿ r00� � ŝ=c�
�
: �18�

This is our most important result. In words, it says that the

diffracted X-ray intensity is proportional to the time-averaged

mutual correlation function of the crystal susceptibility

multiplied by the mutual coherence function of the incident

electromagnetic ®eld.

3.3. Detailed interpretation

As the concept of mutual coherence is not entirely intuitive,

I will discuss it further, bringing in some optical jargon. In

interference experiments, two light beams are brought toge-

ther and the resulting intensity is measured. If the light beams

have the appropriate space±time relationship, such experi-

ments can be viewed as a measurement of the correlation of

the electromagnetic ®eld amplitudes at two different points in

space and time. If the electromagnetic ®elds are produced by

a stationary random process, the time average of such a

measurement is a constant. It measures the mutual coherence

function of the electromagnetic ®eld. It answers the question:

to what extent does knowledge of the ®eld at one point and

one time have predictive power about the ®eld at the other

point and the other time? If the predictive power is high, the

®eld is called coherent and, if it is low, the ®eld is incoherent at

those two points in space and time. All second-order inter-

ference phenomena depend only on the mutual coherence

function of the ®eld.

In order to gain some insight into the possible implications

of (18), we will work out the consequences of an overly

5 In dynamic light-scattering spectroscopy, the spectral distribution of the
scattered light carries important information on the internal motion of the
scattering material (Berne & Pecora, 1976). We used a time-dependent
formalism in order to express the integrated intensity conveniently. The
formalism used by Wolf & Foley (1989) is better suited to calculate the
spectrum of the scattered light.



simpli®ed model for the incident beam. (A more realistic

model, presented in Appendix B, reaches slightly different

conclusions.) We assume that it is a randomly modulated

plane wave, in the `general' direction k�i� and that its coherence

falls off in all three spatial dimensions as a Gaussian,

exp�ÿjr0 ÿ r00j2=d2�, where d� �i is some coherence length.

We will then approximate the mutual coherence function of

the incident beam, for any T, by6

ÿ �i�m;n�r0; r00; T�
' E �i�m E �i�n exp�ik�i� � �r0 ÿ r00� ÿ i!iT� exp�ÿjr0 ÿ r00j2=d 2�:

�19�
We assume, as usual, that the unit cell is much larger than the

wavelength. Nevertheless, the size of the incident X-ray beam

can be much larger than d; in that case, the incident X-ray

beam is an incoherent superposition of many coherent, almost

parallel, beamlets. By assuming a longitudinal coherence, we

assumed that the spectral width of the beam is ��i=�i ' �i=d.

Using T � �r0 ÿ r00� � ŝ=c as in (18), elastic scattering,

!i � !o, and, therefore, !oŝ=c � k�s�, we obtain

ÿ �i�m;n�r0; r00; �r0 ÿ r00� � ŝ=c�
' E �i�m E �i�n exp�i�k�i� ÿ k�s�� � �r0 ÿ r00�� exp�ÿjr0 ÿ r00j2=d 2�:

�20�
Let us now also ignore disorder and thermal motion in the

crystal. Then,

G�r0; r00; T� ' G�r0; r00; 0� ' ��r0� ��r00�; �21�
where we approximated the susceptibility ��r0; t; 0� in (16) by

the electron density ��r0�. Substituting (20) and (21) into (18),

de®ning R � r00 ÿ r0 and using R and r0 as integration vari-

ables, we obtain

hI �s��r; t�i � c

4�

k4
0

r2

X3

m�1

X3

n�1

�
��mn ÿ smsn�

�
Z
V

dr0
Z
V

dR ��r0� ��r0 � R�E �i�m E �i�n

� exp�ÿi�k�s� ÿ k�i�� � R� exp�ÿjRj2=d2�
�
: �22�

In some sense, we can consider

��r0� ��r0 � R� exp�ÿjRj2=d2� �23�
to be the Patterson function of a crystal of size d of `Gaussian

shape'.7 The inner integral in (22) is the intensity of the

diffraction pattern of that small crystal.

It is of interest to discuss the diffraction pattern of a crystal

as we vary the coherence length d of the incident X-ray beam,

while keeping the whole crystal illuminated. It will be shown in

equation (24) that, for a fully coherent incident beam, equa-

tion (22) reduces to the usual formula for X-ray diffraction.

Note, in particular, that the sharpness of the Bragg peaks is the

consequence of the long-range order of the crystal or, in other

words, of the existence of large Patterson vectors that are

much longer than the unit cell. Suppose now that the crystal is

composed of small perfect crystallites with slightly different

orientations. As usual, we assume that the relative origins of

the crystallites are random. If the coherence length of the

incident X-rays is longer than the average size of the crystal-

lites, we get a sum of the intensities of the diffraction patterns

of the individual crystallites. If the coherence length becomes

shorter than the sizes of the individual crystallites, the Bragg

spots become somewhat broader and parts of the crystallites

contribute to the diffraction incoherently.

If we make the coherence length d even shorter, only the

short Patterson vectors will contribute to the diffraction

pattern. As the coherence length of the incident radiation

becomes smaller and smaller, the diffraction peaks broaden

and, when d is of the size of a single unit cell, the diffraction is

continuous: the Bragg conditions do not have to be satis®ed in

order to obtain appreciable diffraction intensity.

If the coherence length is much shorter than the unit cell (or

the size of the molecule), we lose the Patterson vectors that

give information about the relative positions of parts of the

molecule. Clearly, this is not desirable and, therefore, there is

an optimal coherence length for obtaining maximal informa-

tion.

Note that the outer integral in (22) is over the whole illu-

minated area of the crystal. Therefore, if the crystal is illu-

minated by an X-ray beam of limited coherence, the total

number of diffracted photons is the same as from a coherent

incident beam, but, as indicated above, the diffracted intensity

is not concentrated into Bragg peaks. This point cannot be

overemphasized: the total integrated intensity of the diffraction

pattern is independent of the coherence of the incident beam!

As promised in the Introduction, equation (22) shows the

analogy between the diffraction of partially coherent X-rays

from crystals and the diffraction of a coherent X-ray beam

from an orientationally ordered but translationally disordered

collection of molecules.

A ®nal note for crystallographers who are not familiar with

equation (18). I will show now that, for a coherent incident

®eld, (18) reduces to the usual expressions for X-ray diffrac-

tion. Let us set exp�ÿjRj2=d 2� � 1 in equation (22). This

results in the well known expression for the diffraction

intensity of an in®nite crystal in the kinematic approximation

(James, 1982; Jagodzinski & Frey, 1992):

hI �s��r; t�icoherent �
c

4�

k4
0

r2

X3

m�1

X3

n�1

�
��mn ÿ smsn�

�
Z
V

dr0
Z
V

dR ��r0� ��r0 � R�E �i�m E �i�n

� exp�i�k�i� ÿ k�s�� � R�
�
: �24�
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6 In equation (19), we switch to the usual complex notation without warning.
In subsequent formulae, the left-hand side is to be interpreted as the real part
of the right-hand side.
7 The analogy is not perfect. In particular, translational invariance is preserved
in equation (22). If we had a very small `Gaussian' crystal, the electron density
would have been zero outside it and the exponential factor in (23) would have
been exp�ÿ�jr0j2 � jr0 � Rj2�=d 2�.
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4. The coherence of incident X-rays

The purpose of this section is to show that the proposal of this

paper is a realistic one. In other words, it is fairly reasonable

and simple to produce the required short mutual coherence

of incident X-rays using conventional X-ray sources. I will

discuss two methods to do so in some detail. First, the anode

can be made relatively large and the crystal placed relatively

close to it. Second, an image of the anode can be formed on

the crystal using optical elements. There are undoubtedly

other ways to achieve short coherence length in all three

dimensions; for instance, by using synchrotron radiation. It is

also clear that more detailed calculations are needed for

planning real experiments.

A cautionary note: this section reviews some well known

concepts in optics; therefore both trustful readers and experts

can safely skip over it.

4.1. The propagation of mutual coherence

We will review now the propagation of the mutual coher-

ence in preparation for describing some ways to minimize it at

the crystal.

In x3, equation (17), we gave a general de®nition of the

mutual coherence of the electromagnetic ®eld. For con-

venience it is repeated below:

ÿ �i�m;n�r0; r00; T� � hE �i�m �r0; t�E �i�n �r00; t � T�i:
In this section, we make further restrictive assumptions that

are amply satis®ed in practice. We ®rst demand, as in x3, that

the X-ray emission be a stationary random process, at least in

the wide sense. Second, we assume that the X-ray spectrum

incident on the crystal is narrow, ��0 � �0. Third, we use a

paraxial approximation that is satis®ed if the opening angle

of the incident X-ray beam is signi®cantly smaller than 1 rad.

As X-ray optics cannot be made today with numerical aper-

tures much larger than 1=100, this third assumption is also well

satis®ed in practice. When the latter two assumptions are

satis®ed, we can de®ne a center frequency !0 (or a center

wavelength �0) and a dominant wavevector k�i� that corre-

sponds to the incident-beam direction. We will set the z

direction of our coordinate system along the incident beam. In

the following, we also suppress the Cartesian components m

and n, assuming, in effect, scalar wave propagation.

When the (scalar) electromagnetic ®eld, E�r0; t�, is known

on a surface �1 that is more or less perpendicular to the

direction of propagation of the beam (the z axis), it can be

calculated on another similar surface downstream from it by

solving the wave equation (see Fig. 2). If the wave on the ®rst

surface is paraxial, we can either solve the paraxial wave

equation in the volume between the two surfaces or, equiva-

lently, evaluate the Huygens±Fresnel integral [for a detailed

discussion the reader is referred to books by Born & Wolf

(1980, ch. X) or Goodman (1985, chs. 5 and 7)]. In a similar

manner, the mutual coherence, ÿ�r; r0; T�, can also be

`propagated' from one plane to another, by evaluating the

propagation of the two electric ®elds on the right-hand side of

(17) directly. Quoting now from our sources, the mutual

coherence satis®es a pair of wave equations [Goodman, 1985,

equations (5.4-17, 18)]:

r2
1 ÿ

1

c2

@2

@�2

� �
ÿ�r1; r2; �� � 0;

r2
2 ÿ

1

c2

@2

@�2

� �
ÿ�r1; r2; �� � 0;

�25�

where the operators, r2
1 and r2

2 are Laplacians that operate on

the two separate ®eld points, r1 and r2, respectively.

The alternative expression that uses Huygens's integral is

equation (5.4-4) of Goodman (1985), with obliquity factors set

to unity:

ÿ�r1; r2; ��
�
Z
�1

Z Z
�1

Z
1

�0r1

1

�0r2

ÿ q1; q2; � �
r2 ÿ r1

c

� �
dS1 dS2;

�26�
where qi � ��i; �i; �i�, for i � 1; 2, denote the two `source'

points on the incident surface, and ri � �xi; yi; zi� are two

`®eld' points in the vicinity of the second surface in Fig. 2. The

distances ri are between the corresponding ®eld and source

points:

ri � jri ÿ qij
� ���i ÿ xi�2 � ��i ÿ yi�2 � ��i ÿ zi�2�1=2: �27�

Both integrations in (26) are two-dimensional over the surface

�1 of the incident beam. In our notation, dS1 � d�1 d�1 and

dS2 � d�2 d�2. Note that only the differences between the

paths of the two waves, r1 ÿ r2, enter into the propagation of

the mutual coherence. Any time delay that is common to both

paths cancels out.

4.2. Proximity of the anode to the crystal

Ordinary X-ray sources consist of independent atoms

radiating incoherently. As the radiation propagates some

distance away, it becomes coherent. One way to minimize the

coherence of the X-ray beam at the crystal is to put the crystal

close enough to the radiator that coherence cannot develop.

We will show below, by detailed calculation, that this is a

realistic proposal.

Although the sizes of the radiators in X-rays can be

comparable with their wavelength, a �-function correlation

can be used in the formula. At the source the mutual coher-

ence is then

ÿ�q1; q2; �� � I�q1���jq1 ÿ q2j� exp ÿi2�
c�

�0

� �
exp�ÿ����;

� � 0: �28�
The � function that appears, ��jq1 ÿ q2j�, is really two-

dimensional over the radiating surface. We also assumed a

narrow-band Lorentzian spectrum of width �� � c��0=�
2
0. In

order to simplify the formulae, let us assume that the radiator

is a small disc of diameter 2�0, located at the plane � � 0,

centered at � � � � 0, and that we are interested in the



mutual coherence of the radiation on a plane far away from it

in the sense that z� �0 and z� 2�0. We will also calculate

the mutual coherence close to the axis, x1; x2; y1; y2 � z. We

can then use the approximation, for i � 1; 2,

ri � ���i ÿ xi�2 � ��i ÿ yi�2 � ��i ÿ zi�2�1=2

' zi � ���i ÿ xi�2 � ��i ÿ yi�2�=2zi �29�
and, further, z1 ' z2 ' z. We can now substitute (28) into (26)

and carry out one of the surface integrations. We obtain

ÿ�r1; r2; �� �
1

��0z�2 exp�ÿi � exp ÿi
2�c

�0

� � z2 ÿ z1

c

� �� �
� exp ÿ c��0

�2
0

� � z2 ÿ z1

c
�  �0

2�c

� �� �
�
Z
�1

Z
I��; �� exp i

2�

�0z
��x� ��y��

� �
d� d�;

�30�
where �x � x2 ÿ x1, �y � y2 ÿ y1 and

 � ��=�0z���x2
2 � y2

2� ÿ �x2
1 � y2

1��: �31�
Equation (30) is called the Van Cittert±Zernike formula for a

narrow-band paraxial beam.

In order to gain some understanding of (30), we shall

evaluate the mutual coherence in three simple cases. The ®rst

and second are the transverse coherence of a small incoherent

source. They are essentially the Fourier transforms of their

intensity distribution.

First, we assume a small disc of radius �0 that radiates a

uniform intensity I0. (Note that the intensity has units of E 2,

the square of the electric ®eld.) The result of the integration is

ÿ�r1; r2; ��

� I0��
2
0

��0z�2 exp�ÿi � exp ÿi2�
c�

�0

� �
exp�ÿ����

� J1

2��0

�0z
��x2 ��y2�1=2

� ��
2��0

�0z
��x2 ��y2�1=2

� �
;

�32�
where J1��� is the Bessel function of the ®rst kind of order one.

We neglected the term  �0=2�c in the real exponential.

Second, if we assume a Gaussian intensity distribution of

the radiator,

I��; �� � �I0=2� exp�ÿ��2 � �2�=2�2
0�; �33�

the result becomes even simpler:

ÿ�r1; r2; �� �
I0��

2
0

��0z�2 exp�ÿi � exp ÿi2�
c�

�0

� �
exp�ÿ����

� exp ÿ �2��0�2
2��0z�2 ��x2 ��y2�

� �
: �34�

In both (32) and (34), the approximate size of the transverse

coherence length, d, at a distance z from the anode is

d ' z�0=�0, where �0 is the X-ray wavelength and �0 is the

transverse size of the X-ray emission on the anode, as seen

through the collimator. A simple way of understanding this

relation is to notice that, if we had a telescope of aperture d,

the size of the minimum resolved spot at distance z would be

given by z�0=d. If the actual size of the emitter is smaller than

that, its different parts (that emit incoherently) cannot be

resolved. Therefore, within a patch of size d, the radiator looks

like a point source and its radiation is coherent. In the

opposite case, if �0 � z�0=d (or, equivalently, if d � z�0=�0)

the beam is incoherent.

Returning now to equation (30), we calculate the long-

itudinal coherence of the beam, by setting x1 � x2 and y1 � y2,

but z1 6� z2 in (30) and (31):

ÿ�r1; r2; �� �
I0��

2
0

��0z�2 exp�ÿi � exp ÿi2�
c

�0

� � z2 ÿ z1

c

� �� �
� exp ÿ c��0

�2
0

ÿ� � z2 ÿ z1

c

� �� �
: �35�

Note that the longitudinal coherence of the beam depends

only on its spectral width. It approximately equals �2
0=��0, the

mean X-ray wavelength divided by its fractional spectral

width.

4.3. Imaging the anode onto the crystal

The second way of making the incident X-rays relatively

incoherent is by inserting optical elements that image the

source onto the crystal. We use two important simpli®cations

in our treatment. First, we model the optical system by a thin

lens. Second, we assume an `all Gaussian' optical system: a

Gaussian source, as in (33), and a Gaussian aperture of the

lens. The latter means that the X-ray amplitude incident on

the lens is apodized (attenuated) by a Gaussian of width

comparable with the lens aperture. This way we can utilize the

exact formulae developed for Gaussian beams around their

beam waist and the heuristic knowledge developed about

them by laser physicists (Siegman, 1986). A detailed deriva-

tion is given in Appendix A and the interested reader is

directed to it. Although X-ray imaging systems are anything

but thin lenses, our simpli®cations lead to important conclu-

sions that are valid to a good approximation for practical

systems.

The mutual coherence in the neighborhood of the image of

a source can be written as an extension of (26), by allowing the

wave to propagate through an optical system. The result,

quoted below, is given as equation (45) in Appendix A.

ÿ�u1; u2; �� �
R
�1

R R
�1

R
K�u1; q1;ÿp1=c�K��u2; q2;ÿp2=c�

� ÿ�q1; q2; �� dS1 dS2:

The notation is as follows. The coordinates in the source

region are denoted by qi � ��i; �i; �i� . The two `source' points

needed for the propagation of the mutual coherence corre-

spond to i � 1; 2. The coordinates in the region of the image

are similarly denoted by ui � �ui; vi;wi� . The total propaga-

tion distances between the source points qi and their corre-

sponding image points ui are denoted by pi . The complex
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quantity K�u; q;ÿp=c� is called the amplitude-spread function

of the optical system. It is the propagation of a wave origi-

nating at a point q of the source to the point u in the image

region. The principle of least time, also called Fermat's prin-

ciple (Born & Wolf, 1980, p. 128), teaches us that the time

delay, p=c, is well de®ned in the region of the geometric image

of the lens. In fact, the time delay can be calculated from

straight-line propagation.

For a Gaussian transmission of the lens, the amplitude-

spread function can be well approximated by

K�u; q;ÿp=c� � P0

�1=2a

�0zo

exp ÿ c��0

�2
0

ÿ p

c
� z

c

� �� �
� W0

~q0W�z� exp ÿi
2�z

�0

ÿ '�z�
� �� �

� exp ÿ x2 � y2

W�z�2 ÿ i
2�

�0

x2 � y2

2R�z�
� �

: �36�

The symbols in (36) are de®ned and discussed in Appendix A.

For completeness, we repeat some of those de®nitions. The

coordinates x, y and z refer to the geometrical image point and

the z axis is chosen along the beam propagation direction. The

beam parameters are given in (51) by

�NA� � 21=2a

zi

; W0 �
�0

��NA� ; ZR �
�0

��NA�2 ;

where (NA) is the numerical aperture of the lens, W0 is the

minimum beam diameter (its waist) and ZR, called the

Rayleigh range or the depth of focus, is the length of the waist

region of the Gaussian beam. In terms of these parameters, as

shown in (52),

W�z�2 � W2
0

z

ZR

� �2

�1

" #
; R�z� � z� Z2

R

z
; tan�'�z�� � z

ZR

:

Finally, for our restrictive assumptions of an `all Gaussian'

optical system, the mutual coherence of the beam can be

evaluated explicitly in the vicinity of the focal region. To a ®rst

approximation, it is

ÿ�r1; r2; ��

� C
W2

0

W�z1�W�z2�
� exp ÿi2�

c

�0

� � z2 ÿ z1

c

� �
� i�'�z2� ÿ '�z1��

� �
� exp ÿ c��0

�2
0

ÿ� � z2 ÿ z1

c

� �� �
� exp ÿ x2

1 � y2
1

W�z1�2
ÿ x2

2 � y2
2

W�z2�2
� �

� exp ÿi
2�

�0

x2
1 � y2

1

2R�z1�
ÿ x2

2 � y2
2

2R�z2�
� �� �

; �37�

where all the factors that are independent of the relative

positions of u1 and u2 were lumped into the single constant C.

In plain words, the coherence volume of the image of the

X-ray emitter on the crystal is essentially given by the

dimensions of the image of a single point of the emitter.

The books of Born & Wolf (1980, ch. X) and Goodman

(1985, chs. 5 and 7) discuss the in¯uence of aberrations of the

optical system on the coherence volume at the image. If the

coherence area of the radiation incident on the optical system

is much smaller than the input pupil (aperture) of the lens, the

lens is illuminated incoherently. The condition for incoherent

illumination is that the lens is large enough and close enough

to the source [see equation (34)]. In this case, the output

aperture of the lens acts as another incoherent source and the

coherence volume around the geometrical image can again be

calculated by equation (34). An important corollary is that the

coherence volume is quite insensitive to aberrations of the

optical system. Note that the illuminated area of the lens is

generally much larger than the X-ray source itself, so the lens

acts to make the coherence volume small.

This section can be summarized by three important `rules of

thumb'. First, the illuminated area of the crystal is approxi-

mately the size of the emitting anode multiplied by the

magni®cation of the optical elements (a result from geome-

trical optics). Second, the mutual coherence of the beam at the

crystal face is similar to that obtained from an incoherent

source covering the exit pupil (aperture) of the focusing lens.

Thus, its area is usually much smaller than the illuminated

area. In particular, if the optical system has a numerical

aperture (NA), the transverse coherence length is approxi-

mately �0=�NA�. The longitudinal coherence length is the

smaller of �0=�NA�2 and �2
0=��0, the latter limit given by the

spectral width of the incident X-rays. Third, the coherence

volume is relatively insensitive to aberrations in the X-ray

optics.

5. `Solving the phase problem'

In the Introduction, I promised to present a new physical

method for a partial solution of the crystallographic phase

problem. In order to justify such a weighty statement of intent,

I will describe here three different approaches to the phase

problem and discuss them in some detail.

First, it has been known for more than 90 years that the

amplitudes of Bragg re¯ections from crystals can be measured

but their phases cannot. Therefore, by crystallographic tradi-

tion, any prior or physical information about the crystal is

viewed as phase information.

A second approach considers the solution of the crystal

structure to be an `inverse problem': the diffraction pattern

produced by the crystal is observed and our task is to ®nd the

source of the diffracted waves. From this point of view, the

phase ambiguity corresponds to different scatterers that

produce the same diffraction intensity, wherever the latter is

measured.

A third way, which generalizes the second approach, is

through the analogy of X-ray crystallography and holography

(Tollin et al., 1966; SzoÈ ke, 1993). From this point of view, the

recovery of the crystal structure is analogous to the holo-

graphic inverse problem: we try to ®nd the unknown object

whose hologram was observed. The ambiguity of the recov-



ered crystal structure corresponds then to the holographic

dual image.

I will ®nish the section by discussing algorithms to ®nd the

electron density. In particular, I will describe how our `holo-

graphic' method in crystallography, EDEN, was adapted to

recover the electron density from an (oversampled) continu-

ous diffraction pattern, not dissimilar to the one proposed in

this paper.

5.1. `The missing phases'

To repeat, it was well known that the missing phases were a

source of dif®culty in obtaining accurate crystal structures.

Soon after the announcement of the sampling theorem by

Shannon (1949), it was shown by Sayre (1952) that the Bragg

conditions are equivalent to a critical sampling of the

diffraction pattern. This established once and for all that it is

lack of information that prevented the unique solution of

crystal structures from measured diffraction data and not the

lack of skill of the crystallographers.

The sampling theorem of Shannon ensures that a function

of ®nite bandwidth is completely determined by its sampled

values if they are sampled closely enough [for a discussion see

work by Bricogne (1992, x1.3.1.6.1)]. Equivalence of the Bragg

conditions to critical sampling means that, if the phases of

crystal re¯ections are known, the electron density can be

reconstructed everywhere; but any missing information makes

the solution of a crystal structure ambiguous. The subject is

further clari®ed by Daubechies (1992, ch. 2) who teaches us

that undersampling causes ambiguity, critical sampling

produces a representation of the electron density that

converges very slowly and oversampling allows a rapidly

convergent representation. Therefore, more information

always helps. I quote Bricogne's remarks on this matter

(Bricogne, 1992, x1.3.3.1.1.7): `Thus the loss of phase is inti-

mately related to the impossibility of intensity interpolation,

implying in return that any indication of intensity values

attached to non-integral points of the reciprocal lattice is a

potential source of phase information'.

While there is general agreement in the literature on the

equivalence of Bragg's conditions and critical sampling, there

is no consensus on the question of how much information is

suf®cient to compensate for the missing phases of the re¯ec-

tions. This clearly depends on the kind of obtainable infor-

mation. For example, it is generally accepted that two

independent derivatives in multiple isomorphous replace-

ment, or a single derivative and one-wavelength anomalous

dispersion, produce enough information to solve the crystal

structure. With non-crystallographic symmetry, which is

equivalent to obtaining re¯ection intensities at non-integral

values of the reciprocal lattice, it is less clear whether a

twofold or threefold symmetry is enough to solve the struc-

ture. The use of spatial information seems to be very effective.

With the holographic method, EDEN, we succeeded in solving

the crystal structure from a simulated (noiseless) diffraction

pattern and from the position of empty regions in 60% of the

unit cell. BeÂran & SzoÈ ke (1995), using more sophisticated

methods, have recovered a similar crystal from the knowledge

of a little more than 50% of the contents of the unit cell, most

of which was in the empty region. When high-resolution data

are available, direct methods can recover the whole crystal ab

initio.

5.2. Diffraction, the inverse problem and its null space

The solution of a crystal structure is an `inverse problem':

the diffraction pattern produced by the crystal is observed and

our task is to ®nd the source of the diffracted waves. Such

inverse problems have been studied by mathematicians and

they are known to be very dif®cult, unstable and ill posed

(Bertero, 1989; Luenberger, 1984; Sabatier, 1987; Natterer,

1986). In plain language, this means that there are usually

many crystal structures that produce almost the same

diffraction patterns and that very small measurement errors

correspond to very large differences in the crystal structure. It

cannot be repeated enough times that these are properties of

the problem itself and that no mathematical magic can undo

them.

The Bragg condition prevents the measurement of the

diffraction pattern everywhere. This leads to inadequate

sampling of the diffraction pattern and additional uncertainty

in the recovery of the scatterer, as discussed above.

Nevertheless, even if the diffraction pattern were measured

everywhere, our dif®culties would not yet be over. There are

still several `trivial' ambiguities in the solution of the inverse

problem (Miao et al., 1998). The ®rst one is that the origin of

the unit cell can be placed at an arbitrary position: two elec-

tron densities, ��r� and ��r� r0�, with any constant r0 give the

same diffraction pattern. The second one is the enantiomorph:

two crystal structures that have the densities ��r� and ��ÿr�
are centric re¯ections of each other; if the densities are real

numbers, they also have the same diffraction pattern. Note

that anomalous scattering is capable of resolving the ambi-

guity. The third one is the Babinet opposite: two electron

densities, ��r� and C ÿ ��r� for any real constant C have the

same diffraction pattern except the �h; k; l� � �0; 0; 0� term

that cannot be measured. Theoretically, it is important to

realize that two crystal structure solutions that relate to each

other by these symmetries are equally valid.8

5.3. The holographic inverse problem

When GaÂbor invented holography (GaÂbor, 1948, 1949), he

paved the way to obtain three-dimensional images at atomic

resolution. Stated in general terms, his insight was that, when

a known wavefront is made to interfere with an unknown

wavefront, the phase of the latter becomes measurable (with

twofold uncertainty). He proposed a two-step method to

recover three-dimensional objects using this phase informa-

tion. In the ®rst step, the recording of the hologram, the
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unknown object and a reference object are illuminated by a

coherent source of waves. In its simplest version, the reference

object is a small (point-like) scatterer. The waves scattered

from the reference object and those scattered from the

unknown object form an interference pattern that is recorded

on a screen at some distance away. GaÂbor called this recording

a hologram. The name implies that there is three-dimensional

`total' information contained in the recorded interference

pattern. The second step is the reconstruction of the scattering

object from this recording. For this step, he proposed to illu-

minate the hologram with a replica of the reference wave and

showed that part of the wave transmitted by the hologram is

the same as the wave originally scattered by the unknown

object. Three-dimensional reconstruction by holography is so

widespread and successful that most of us do not even stop to

contemplate the holograms we encounter daily on our credit

cards, drivers' licences, passports and even paper currency.

GaÂbor's method of reconstruction corresponds to the way

we see a luminous (or illuminated) object: we extrapolate the

waves coming from the object backwards and we place the

object at the position where those waves are strongest. Barton

(1991) developed the method for computers and it was used

very successfully for the reconstruction of three-dimensional

images of atomic resolution both from X-ray and from elec-

tron holograms. Recent achievements are described in a paper

by Tegze et al. (2000) and in the references they cite.

The close connection between holography and crystal-

lography has been recognized many times. In his original

paper, GaÂbor credited Bragg's optical ideas for sparking the

invention of holography. Some years later, the eminent hol-

ographer George Stroke and the eminent crystallographers

Peter Main and Michael Rossmann (Tollin et al., 1966)

discussed the subject very clearly. I took it up some years ago

(SzoÈ ke, 1986, 1993) and, naturally, I will discuss it from my

point of view.

When the analogy of holography and crystal diffraction is

recognized, the `solution' of crystal structures is analogous to

the holographic inverse problem. The easiest way to see that is

to imagine that part of the crystal structure is known and that

this known part of the structure serves as the reference wave

of the hologram. This leads to the generalization of the

diffraction inverse problem and it obviously reduces to it when

no part of the scatterer is known.

There are two origins to the ambiguity in holographic

reconstruction: one is called the holographic dual image, the

other one is the lack of adequate sampling (SzoÈ ke, 1993). A

hologram is really an interferogram of a sort. When two waves

interfere, the resulting intensity depends on the cosine of their

phase difference. As the cosine of an angle is the same as the

cosine of the negative angle, interference patterns have an

`inherent' twofold ambiguity. The holographic dual image is a

(very complicated) elaboration of this fact. Coming now to the

question of adequate sampling, the possibility and necessity

of oversampling was recognized very early in holography

(GaÂbor, 1949; Leith & Upatnieks, 1962). Therefore there has

been very little explicit discussion of it in recent literature.

Naturally, in discussing crystallography from a holographic

perspective, the subject has been treated quite extensively. For

example, in a recent paper (SzoÈ ke, 1997) I gave a very detailed

discussion of the properties of the holographic dual image;

over- and undersampling; and the stability of the holographic

recovery. I refer the interested reader to that paper for details.

5.4. Recovery algorithms

I will mention brie¯y three different but closely related

algorithms to `solve' an oversampled diffraction pattern. The

®rst one is based on GaÂbor's algorithm (Barton, 1991), as

mentioned above. It is used very successfully in X-ray holog-

raphy and photoelectron holography. It is closely related to

the back-projection method in tomography (Natterer, 1986). I

would like to point out that the coverage of the reciprocal

space is very sparse even in multiple-energy X-ray holography;

yet, with oversampling, Barton's algorithm recovers the scat-

terers to high resolution and ®delity. The second one follows

the tradition of `phase retrieval' algorithms in astrophysics and

image processing. It essentially iterates between real and

reciprocal space, enforcing the appropriate constraints at each

step. Recent work by Miao & Sayre (2000) gives a clear review

of the subject and promises to be able to recover the molecule

from an oversampled diffraction pattern.

The third algorithm is a crystallographic recovery algorithm

that is based on the connection between holography and

crystallography, which we have been developing for some

years now (SzoÈ ke, 1993; SzoÈ ke et al., 1997; SzoÈ ke, 1998). The

program EDEN focuses on recovering the electron density of

the crystal using all available information. Of course, there is a

unique relation between the electron density and the complex

structure factors, but we have found it much more illuminating

and useful to treat real-space information in real space and

reciprocal-space information in reciprocal space.

In a recent paper (SzoÈ ke, 1999), I discussed X-ray diffrac-

tion from a crystal that contains two similar molecules. I

assumed that the molecules occupy random positions: any

position in the crystal has the same probability of being

occupied by one or the other kind of molecule. I have shown

that the diffraction pattern of such a crystal has two compo-

nents. The usual Bragg pattern is that of the weighted average

of the two molecules. The second component is a continuous

(diffuse) diffraction pattern; it is that of the `difference'

molecule. The overall intensity of the continuous diffraction

pattern is, of course, maximum when half the molecules are of

one kind and half of them of the other kind. We simulated this

continuous diffraction pattern using two states of the photo-

active yellow protein as deposited in the Protein Data Bank at

that time. We placed the difference molecule into an arti®cial

unit cell that is twice the size of the real unit cell. This allows

the diffraction to be sampled at double the critical frequency

in all three spatial dimensions. We also constrained the

molecule to be in only one of the eight original unit cells (by

demanding that the electron density be zero in the other 7=8

of the arti®cially doubled unit cell). Our program EDEN

recovered the electron density of the difference molecule

essentially without error, when some partial information was

supplied as a starting point for recovery. The paper gives a



rather detailed discussion of the uniqueness, stability and

convergence of the recovery in terms similar to those outlined

above.

Recently, David Sayre and his collaborators (Miao et al.,

1999) measured the diffraction pattern of a small (micrometre

scale) planar object. They used oversampling and an iterative

`phase retrieval' algorithm (mentioned above) to recover the

object. Their work brought new focused attention to the

possibility of `solving the phase problem' by oversampling the

diffraction pattern. They also coined the phrase `oversampling

method' (Bates, 1982) that aptly describes much of what is

written in the present paper.

6. Summary and discussion

I summarize here our main results. In x3, we derived expres-

sions for the scattered intensity of a partially coherent X-ray

beam incident on a crystal. Our most general result was that,

in any particular direction, the scattered intensity is propor-

tional to the Fourier transform of the electron-density auto-

correlation function of the crystal multiplied by the mutual-

coherence function of the incident beam [equation (18)]. This

was the point of departure for the rest of the paper. For

the usual coherent incident X-ray beam, in the kinematic

approximation, the scattered intensity is proportional to the

Fourier transform of the electron-density autocorrelation

function, without the second factor. We surmised that if the

coherence length of the incident X-ray beam could be kept

almost as small as a unit cell, the usual diffraction peaks would

smear out and, therefore, we could obtain information on the

electron density in directions that do not necessarily satisfy the

Bragg conditions.9

Although the derivations in this paper were rigorous, I also

tried to give intuitive explanations of my ideas at each stage. In

case I have not succeeded, I would like to address here several

nagging questions. First, are there other ways to derive the

same results, using more familiar concepts? Second, we know

that, except for spectral regions of anomalous dispersion,

changing the wavelength of the incident X-rays does not give

independent information because measurable intensities are

always along reciprocal-lattice vectors of the crystal. Can we

justify in simple terms that an incident beam of limited

coherence gives information on Fourier components of the

unit cell in directions where the electron density is not peri-

odic in the crystal? Finally, why do the Bragg re¯ections lose

so much of their intensity under these conditions?

The electric ®eld amplitude of the scattered wave is a linear

function of the incident ®eld amplitude and, therefore, of the

®eld emitted by the X-ray source. In the main body of the

paper we calculated the observed diffraction intensity; a

quantity that is quadratic in the electric ®eld. The second-

order non-linearity of the detector introduced the Patterson

function of the crystal as well as the mutual coherence of the

incident ®eld. Here I will show, at least in outline, that the

scattered ®eld itself can be calculated in two different ways.

The ®rst way is to calculate the incident ®eld at the position of

the crystal as a sum of the ®elds emitted by the (indepen-

dently) radiating X-ray emitters; then, starting from this

partially coherent incident ®eld, calculate the scattered ®eld.

The second way is to start from each radiating atom, calculate

the ®eld scattered by the crystal, then add up the scattered-

®eld amplitudes for the independently radiating atoms. We

should get the same result as in the main body of the paper.

Below, I will calculate the scattered ®eld for an arbitrary

vector of reciprocal space and show that its amplitude is

®nite, smoothly varying with direction and that its square is

proportional to the number of unit cells in the crystal. I will

also show that the coherence criteria I proposed are necessary

and suf®cient for those properties.

The ®rst type of calculation paraphrases the derivation in

the main body of the paper in terms of electric ®eld amplitudes

instead of their mutual coherence. Let us assume that the

coherence volume of the incident electric ®eld coincides with

the unit cell of the crystal. Let us concentrate on a particular

unit cell of the crystal. The incident electric ®eld is the sum of

all the ®elds radiated by all atomic radiators and propagated

to the particular unit cell. It is a sum of many vectors with

random amplitudes and phases; therefore its complex ampli-

tude is a Gaussian random vector. The ®eld is coherent within

the unit cell, meaning that whatever the amplitude and phase

of the ®eld is at one point, it is about the same at other points

of the unit cell. The scattered ®eld can now be calculated from

that particular unit cell; it is proportional to the incident ®eld,

but its phase is shifted depending on the exact position of the

unit cell that does the scattering. (Of course, the scattered ®eld

is that of a non-periodic object, therefore it is continuous.) We

can repeat the calculation for other unit cells. As the incident

®elds have Gaussian random amplitudes and uniform random

phases, so does the scattered ®eld. The result is that the sum of

all the scattered ®elds is a Gaussian random ®eld with an

amplitude proportional to N1=2, where N is the number of unit

cells in the crystal. The time-averaged intensity is, therefore, N

times the diffraction intensity of the single unit cell. Note that

the relative phase of the diffracted ®eld from two different

unit cells is always random because the incident ®eld has

random phases. In Bragg directions, the relative phase shift of

the scattered ®eld with respect to the incident ®eld from two

different unit cells is 2n�, so the electric ®elds add in phase if

the incident ®elds have the same phase. This is the reason that,

usually, Bragg re¯ections have strong intensities. Under our

assumption of limited coherence, the scattered ®eld is still a

sum of Gaussian random vectors even in the directions of

reciprocal-lattice vectors.

The second calculation is more subtle. Let us consider an

individual emitter. The ®eld incident on the crystal is coherent

over many unit cells. Therefore, our expectation is that the

radiation scattered from the crystal should be restricted to the

Bragg directions. However, if we account for the randomness
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of the scattered-®eld amplitudes from the different emitters,

we get the same result as in the ®rst calculation.

Some details of the calculation are given in Appendix B; I

will outline the main steps here. Individual atomic emitters are

modeled as point radiators with Gaussian random amplitudes

and random phases which start to radiate at uniformly random

times and decay in a short time, each radiator emitting at its

own frequency. It is assumed that the whole emitting region is

`small' and the radiation is `narrow band', so that there is a

main incident wavevector, k�i�, and the rth individual radiator's

wavevector is given by a small deviation from it,

k�i�r � k�i� ��k�i�r . The electric ®eld at the position r0 and time

t0 in the crystal is then calculated and equation (12) is used to

calculate the diffracted ®eld in the arbitrary direction, k�s�.
Next, the sum over all the emitters is carried out. We notice

that an `equivalent' electron density can be de®ned, given by

the real electron density, ��r0�, multiplied by phase terms that

originate from the deviation of individual emitters from the

average direction, as well as from the deviations of their

frequency from the average. The scattered ®eld is the

diffraction pattern of the equivalent electron density, inte-

grated over the crystal. Closer examination shows that, if the

conditions outlined in the paper are satis®ed, the equivalent

electron density acquires a random phase in each unit cell and

the results of the paper are recovered. In some sense we

transferred the coherence of the ®eld into an equivalent

electron density. In Appendix B, I also show that the condi-

tions are necessary and I digress on an alternative inter-

pretation of convergent-beam monochromatic diffraction and

of narrow-band Laue diffraction.

The purpose of x4 was to show that the mutual-coherence

volume of the incident X-rays can be made small with very

reasonable means and effort. All present X-ray sources are

composed of incoherent emitters but, as X-rays propagate

away from the source, they become more and more coherent. I

outlined two ways to minimize the coherence of the X-ray

beam incident on the diffracting crystal. First, the source of

X-rays (the anode) can be made relatively large and the

crystal can be placed relatively close to it. Second, an image of

the anode can be formed on the crystal using optical elements.

The simpler way is the ®rst one. We used the Van Cittert±

Zernike formula for a narrow-band paraxial beam [equation

(30)] to show that the transverse coherence of the incident

X-ray beam is approximately z�0=r, where �0 is the X-ray

wavelength and r is the transverse size of the X-ray emitter, at

a distance z away, as seen through the collimator. For instance,

for an emitting anode diameter of r � 0:1 cm, a mean X-ray

wavelength of �0 � 1:5 AÊ and a distance of z � 5 cm to the

crystal, we obtain a transverse coherence length d ' 75 AÊ ,

which can be comparable to the size of the unit cell of a

macromolecular crystal. Note that the transverse coherence

length decreases if we increase the size of the emitter, bring

the crystal closer to the anode and use a shorter X-ray

wavelength. The longitudinal coherence, given by equation

(35), is approximately �2
0=��0, the X-ray wavelength divided

by its fractional spectral width. In order to obtain a longi-

tudinal coherence length of �75 AÊ , one has to have a frac-

tional bandwidth of �0.02. This excludes the use of

characteristic radiation, as it usually has an intrinsic bandwidth

of �10ÿ4.

The second method is to form an image of the anode at the

crystal, using optical elements. We established three important

`rules of thumb' (Born & Wolf, 1980, ch. X; Goodman, 1985,

chs. 5 and 7). First, the illuminated area of the crystal is

approximately the size of the emitting anode multiplied by the

magni®cation of the optical elements, as a result of geome-

trical optics. Second, the mutual coherence of the beam at the

crystal face is similar to that obtained from an incoherent

source covering the exit pupil of the focusing lens. Thus its

area is usually much smaller than the illuminated area. In

particular, if the optical system has a numerical aperture

(NA), the transverse coherence length is approximately

�0=�NA�. The longitudinal coherence length is the smaller of

�0=�NA�2 and �2
0=��0, the latter limit given by the spectral

width of the incident X-rays. Third, the coherence volume is

relatively insensitive to aberrations in the X-ray optics.

An experiment that suggests itself is to move a suitable

crystal along the axis of the imaging optics. When the crystal is

far from the focus, we should be able to record the usual Bragg

diffraction pattern. As the crystal moves into the focal region,

the diffraction pattern should broaden and, if the conditions

are right, it should disappear. One obvious advantage of such

an experiment is that the diffuse background, resulting from

thermal motion and crystal imperfections, can be monitored

and subtracted properly. It is clear from the preceding

considerations that more careful and detailed theoretical

development is needed for planning real experiments. It is of

particular importance to consider synchrotron sources, where

the situation is more complicated.

In x5, I discussed three appproaches to the `phase problem'

of crystallography. Traditionally, crystallographers think in

terms of reciprocal space. I described an alternative point of

view that is a relative of holography. I found it fruitful for

®nding new methods to obtain information on electron

densities as well as for the consistent and ef®cient use of

available information. In particular, our program EDEN is

capable of recovering the electron density from an over-

sampled diffraction pattern, given a suitable starting point.

Some remarks are in order about previous similar work.

The closest one is that of DusÏek (1994, 1995) who calculated

the diffraction from a crystal taking into account the mutual

coherence of the incident X-rays. His formulae are, of course,

identical to ours. Unfortunately, he did not consider the case

where the unit-cell dimensions of the crystal are so much

larger than the X-ray wavelength that the coherence length of

the incident radiation can be made comparable with them. His

work concentrated on small shifts in the diffraction maxima

that occur when the transverse coherence length of the beam

is not much larger than the wavelength.

In this paper, I used material only from venerable optics

textbooks and papers. After all, X-rays are electromagnetic

waves. I did not consider similar literature on electron

microscopy. I have no doubts that analogous experiments can

be carried out using light microscopes, soft X-ray microscopes



and electron microscopes (Cowley, 1995; Pendry, 1974). I

would not be surprised to learn that such experiments have

indeed been performed and I am ready to concede priority to

anyone who did them.

APPENDIX A
The propagation of mutual coherence through X-ray
optics

In this Appendix, we develop formulae for the propagation of

the mutual coherence of X-rays from an incoherent source,

through a thin lens, to the region of the image. We follow

closely Goodman's (1985) treatment. The notation is that of

Fig. 3(a). We need three coordinate systems. The coordinates

in the source region are denoted by qi � ��i; �i; �i�, where

i � 1; 2 denote the two `source' points needed for the

propagation of the mutual coherence. The two similar points

in the region of the lens are ri � �xi; yi; zi� and the distances

between qi and ri are ri, as de®ned in equation (27). The third

coordinate system is in the region of the image, where the

diffracting crystal is to be placed. The two image points in

it are denoted by ui � �ui; vi;wi�. The total propagation

distances between the source points, qi, and their corre-

sponding image points, ui, are denoted by pi. They are de®ned

similarly to equation (27).

The mutual coherence at the input plane of the thin lens is

given by (30) and (31) with z1 � z2 � z � zo, the object

distance. Note, speci®cally, that  in (31) describes the

curvature of the wavefront; it is that of a spherically divergent

wave centered at the source. For completeness, we repeat

equations (30) and (31) with the curvature parameter denoted

by  o, emphasizing that it is the curvature of the wave

emanating from the source:

ÿ�r1; r2; ��in �
1

��0zo�2
exp�ÿi o� exp ÿi

2��c

�0

� �
� exp ÿ c��0

�2
0

� �  o�0

2�c

� �� �
�
Z
�1

Z
I��; �� exp i

2�

�0zo

��x� ��y��
� �

d� d�;

where �x � x2 ÿ x1, �y � y2 ÿ y1 and

 o � ��=�0zo���x2
2 � y2

2� ÿ �x2
1 � y2

1��:
The thin lens will be described by an amplitude transmission

P�x; y� � P0�x; y� exp�ÿ�x2 � y2�=2a2�; �38�
where a, of the order of the radius of the lens, denotes its

`Gaussian apodizing radius'. P0�x; y�, the `aperture function'

of the lens, is a slowly varying, possibly complex, function, the

complex part of which describes the aberrations of the lens.

The lens also introduces a time delay that depends on its focal

length, f, and the radial coordinates of the (paraxial) ray:

�� � ÿ�x2 � y2�=2cf : �39�
If we put the time delay into (30), we obtain
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2�c

� �
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where  i is de®ned in (44) below. We can substitute (40) into

(30), then use the propagation formula (26) to obtain the

mutual coherence at any point in space.

The formulae can be considerably simpli®ed in our `all

Gaussian' case. For a start, we multiply the two curvature

terms in (30) and (40):
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� �
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�

�0zi

��x2
2 � y2

2� ÿ �x2
1 � y2

1��
� �

: �41�

In order to simplify the right-hand side, we used the connec-

tion between the object distance, zo, the image distance, zi, and

the focal length, f, for the thin lens:

1=zo � 1=zi � 1=f : �42�
Equation (41) shows that, at the output of the lens, a spherical

wavefront centered at the image point is obtained. (This is, of

course, the condition for image formation.) Let us write

explicitly
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Figure 3
(a) Geometry for imaging an incoherent source onto a crystal. (b) Details
in the vicinity of the image.
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1��: �44�
At this point, we could use equation (7.1-46) of Goodman

(1985) to obtain the mutual coherence of the X-ray beam at

the crystal. The result would be similar to Goodman's

`formidable result', equation (7.1-36).

A much simpler formula can be obtained for the propaga-

tion of a Gaussian X-ray beam through an `all Gaussian'

optical system. We are guided by the general result that the

mutual coherence of the radiation in the image region can be

decomposed, as in equation (7.1-39) of Goodman (1985):

ÿ�u1; u2; �� �
R
�1

R R
�1

R
K�u1; q1;ÿp1=c�K��u2; q2;ÿp2=c�

� ÿ�q1; q2; �� dS1 dS2: �45�
The complex quantity K�u; q;ÿp=c� is called the amplitude

spread function of the optical system. It describes the propa-

gation of a wave originating at a point q of the source to the

point u in the image region. We will restrict the transmission

factors to be Gaussian, as in (38).

Let us choose a single point of the source, q � ��; ��. Let us

also choose one of the coordinates in the region of the lens,

r1 � �x1; y1�. The part of equation (43) that will contribute to

the amplitude spread function, K�u1; q1;ÿp=c�, is given by the

factor

P0�x1; y1� exp ÿ x2
1 � y2

1

2a2

� �
exp ÿi

�

�0zi

�x2
1 � y2

1�
� �

� exp ÿi
2�

�0zo

�x1� � y1��
� �

: �46�

The amplitude spread function can then be calculated, once

the additional propagation of the wave between the lens and

the focal region is taken into account.

The wavefront emerging from the lens is constant on a

spherical surface that is centered on the geometric image point

of the source point, ��; ��. Referring to Fig. 3(b), the geometric

image point is

�u0; v0;w0� � ÿ zi

zo

�;ÿ zi

zo

�;ÿ u2
0 � v2

0

2zi

� �
; �47�

as can be seen by demanding that the image point has the

distance zi from the center of the lens and expanding the

resultant expression to ®rst order. If we now draw a sphere

around �u0; v0;w0� with radius zi, the coordinates of this

sphere, in the lowest-order approximation, are the same as the

complex factors in (46). We assume that the thin lens is

aberration free.

If we assume that P0�x; y� is approximately constant, the

wave emerging from the lens is a Gaussian spherical wave

(Siegman, 1986, x16.3, equation 33). More accurately, its

complex amplitude is that of a lowest-order Gaussian beam far

from its focus. In order to simplify our notation, we describe

the propagation of the beam in a coordinate system where the

beam propagates along the z axis and we put the origin of

the coordinate system at the geometrical image point. The

propagation of such a wave under paraxial conditions can be

written in closed form, either by solving the paraxial form of

the wave equation, (25), or by evaluating the Huygens inte-

gral, (26). The result is self-similar propagation in the sense

that the wave stays Gaussian everywhere; only its diameter

and its radius of curvature change. An `elegant' way of

representing the propagation of a Gaussian beam is the

following. Let us de®ne a (properly normalized) scalar wave

amplitude,

E�x; y; z� � 2

�

� �1=2
W0

~q0W�z� exp ÿi
2�z

�0

ÿ '�z�
� �� �

� exp ÿ x2 � y2

W�z�2 ÿ i
2�

�0

x2 � y2

2R�z�
� �

: �48�

The parameters W(z) and R(z) denote the diameter and the

radius of curvature of the wave, respectively. The z-dependent

phase shift, '�z�, is de®ned in equation (52) below. It is

important only in the focal region. We also de®ne a complex

beam radius, ~q�z�, by

1= ~q�z� � 1=R�z� ÿ i�0=�W�z�2: �49�
Then the entire propagation of the beam is expressed by the

simple equation

~q�z� � ~q0 � z: �50�
The parameters appearing in equations (48), (49) and (50) can

be connected with those appearing in (47) by assuming that

the diameter of the lens is much larger than that of the focused

beam. In fact, the beam parameters can all be calculated from

the numerical aperture of the optical system, using the

following relations. We ®rst de®ne three parameters:

�NA� � 21=2a

zi

; W0 �
�0

��NA� ; ZR �
�0

��NA�2 : �51�

(NA) is the numerical aperture of the lens, W0 is the minimum

beam diameter (its waist) and ZR, called the Rayleigh range or

the depth of focus, is the length of the waist region of the

Gaussian beam. In terms of these parameters,

W�z�2 � W2
0

z

ZR

� �2

�1

" #
; R�z� � z� Z2

R

z
; tan�'�z�� � z

ZR

:

�52�
Around the beam waist, at z � 0, the minimum beam

diameter is W0. It is clear from (47) that the beam diameter



stays within a factor of 21=2 of its minimum as long as jzj � ZR.

The wavefront of the beam ¯attens out around z � 0, as

R�z� ! 1 there. At large distances from the focus, jzj � ZR

and R�z� ! z, with an error of Z2
R=z. The so-called Guoy

phase shift, '�z�, causes a lengthening of the wavelength in

the focal region. The lengthening at z � 0 is given by

��0=�0 � �0=ZR. The more general formulae (52) and (48)

show that at z � �ZR the phase shift is �45� and a full

passage through the focus always causes a 180� total phase

shift of the wave.

APPENDIX B
Calculation of the diffracted field

In this Appendix, the calculation of the diffracted ®eld from a

crystal without the use of correlation functions is outlined. The

X-ray source will be modeled as a collection of independent

point radiators and the scattered ®eld for a general direction

of the detector will be calculated. I will attempt to show that

the diffraction pattern is the incoherent sum of those of

individual molecules if and only if the coherence volume of

the radiation is of the order of that of the unit cell in all three

dimensions. I also add some remarks on Bragg scattering using

a convergent beam and on `narrow band' Laue diffraction.

We start from equation (12) for calculating the scattered

electric ®eld at the detector, E�s��r; t�, and make the following

simpli®cations. We use complex notation and consider scalar

®elds. We also ignore disorder and thermal motion in the

crystal and use its electron density, ��r�, for the susceptibility.

The result is

E�s��r; t� � k2
0

r�s�

Z
V

��r0�E�i��r0; t0 � r0 � ŝ=c� dr0; �53�

where the symbols are the same as in Fig. 1. The reader is

reminded that r and t refer to the region of the detector, r0 and

t0 refer to the crystal region, and r00 and t00 refer to the region of

the X-ray source. The superscripts (i) and (s) indicate the

incident and scattered waves, respectively. The relations

among the coordinates of the detector and the crystal are

r � r�s�ŝ � r�s��k�s�=k�s��, where ŝ is a unit vector in the direction

of the scattered wave, k�s� is the wavevector of the scattered

wave and k�s� is its magnitude. The average retardation of the

wave at the crystal is t0 � t ÿ r�s�=c. The distance from the

crystal to the detector is approximated as jrÿ r0j ' r�s� ÿ r0 � ŝ
in numerators. In denominators, the cruder approximation

jrÿ r0j ' r�s� is used.

The ®eld emitted by the X-ray source is modeled as a sum

of R independent point radiators, located at r00r , where

1 � r � R. Each radiatior is assumed to emit an electric ®eld

E�r00r ; t00� �Er exp�ÿi'r� exp�ÿi!r�t00 ÿ t000;r��
� ��t00 ÿ t000;r� exp�ÿ��!r=2��t00 ÿ t000;r��: �54�

In this model, each radiator has a center frequency, !r, and a

Gaussian random amplitude and phase, Er exp�ÿi'r�. The

start of the radiation, at t000;r, is accounted for by the step

function, ��t00 ÿ t000;r� and the intrinsic line width of the radiator,

�!r, is modeled as an exponential decay.

In order to calculate the ®eld at the detector, we need the

electric ®eld at the crystal for use in equation (53):

E �i�r r0; t ÿ r�s�

c
� r0 � k�s�

ck�s�

� �
� Er exp�ÿi'r�

r�i�
expfÿi��k�s�r ÿ k�i�r � � r0 ÿ !r�t ÿ t0;r��g

� � 1

!r

���
� �

exp ÿ�!r

!r

���
� �

; �55�

where ��� in the last two terms denote the same argument as

within the square brackets of the second exponential. We

de®ned the relations among the coordinates of the crystal and

the emitters as ÿr00r � r�i��k�i�r =k�i�r �, where k�i�r is the wavevector

of the incident wave and k�i�r � !r=c is its magnitude. The

average retardation of the wave at the crystal is t00 � t0 ÿ r�i�=c.

The distance from the emitter to the crystal is approximated as

jr0 ÿ r00j ' r�i� � r0 � k�i�r =k�i�r in numerators. In denominators,

the cruder approximation jr0 ÿ r00j ' r�i� is used. The symbol

t0;r � t000;r � �r�i� � r�s��=c is the mean start time of the radiation,

as seen by the detector. For elastic scattering, k�s�r � k�i�r .

Straightforward substitution of (55) into (53) gives

E �s��r; t� � k2
0

r�i�r�s�
X

r

Z
V

��r0�Er exp�ÿi'r�

� expfÿi��k�s�r ÿ k�i�r � � r0 ÿ !r�t ÿ t0;r��g

� � 1

!r

���
� �

exp ÿ�!r

2!r

���
� �

dr0: �56�

We now make the approximation that the source is small

and of narrow spectrum. The source then has an average

frequency, !0, and an average wavevector, k�i�. The wave-

vector of the incident radiation from the rth source is

k�i�r � k�i� ��k�i�r . It is characterized by small deviations,

j�k�i�r j � jk�i�j from the average. The incident wavevector has

a longitudinal component, k
�i�
rk � k�i��xr=x0� � k�i��1� """r�. It

is implied that j"""rj � 1. To ®rst order in "r, the perpendicular

component, �k
�i�
r?, comes from the angular extent of the

source only. The result, valid to ®rst order, is then

k�s�r ÿ k�i�r � �k�s� ÿ k�i���1� "r� ��k�i�r?: �57�
This expression will now be substituted into equation (56) and

only terms that are ®rst order in the small quantitites "r,

�!r=!r and j�k�i�r?j=jk�i�j will be kept. The result is

E �s��r; t� � k2
0

r�i�r�s�
X

r

Z
V

��r0�Er exp�ÿi'r�

� expfÿi��k�s� ÿ k�i�� � r0 ÿ !r�t ÿ t0;r��g
� expfÿi�"r�k�s� ÿ k�i�� � r0 ��k

�i�
r? � r0�g

� � 1

!r

���
� �

exp ÿ�!r

2!r

���
� �

dr0; �58�

where ��� in the last two terms denotes the zero-order term,

��k�s� ÿ k�i�� � r0 ÿ !r�t ÿ t0;r��.
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This equation can be converted to the form

E �s��r; t� � k2
0

r�i�r�s�

Z
V

�equiv�r0�E �i�equiv�r0; t0�

� expfÿi��k�s� ÿ k�i�� � r0�g dr0: �59�
The interpretation of this form is that an `equivalent' incident

X-ray ®eld is scattered by an `equivalent' electron density in a

general direction (which is not necessarily a reciprocal-lattice

vector). Comparing (58) and (59), we obtain the de®nition

�equiv�r0�E �i�equiv�r0; t0�
�
X

r

��r0�Er exp�ÿi'r� expfi�!r�t ÿ t0;r��g

� expfÿi�"r�k�s� ÿ k�i�� � r0 ��k
�i�
r? � r0�g

� � 1

!r

���
� �

exp ÿ�!r

2!r

���
� �

: �60�

Here, ��� is de®ned as in (58).

In order to interpret this formula, consider a scattering

point r0 in the crystal. The electric ®eld at that point is a sum

of many random components. In particular, the factor

Er exp�ÿi'r� expfi�!r�t ÿ t0;r��g is a Gaussian random vector

for each emitter and the equivalent ®eld is the sum over the

relevant emitters. It has to be stressed that the ®eld at any

scattering point, r0, has a well de®ned amplitude and phase.

Let us consider now how the ®eld changes as the scattering

point moves within the crystal. The change is determined by

the factor expfÿi�"r�k�s� ÿ k�i�� ��r0 ��k
�i�
r? ��r0�g, where �r0

is the variation of the scattering point. In essence, if the phase

of this factor changes by 2�, the new effective electric ®eld

amplitude is unrelated to the original one at r0. We can identify

the coherence volume of the incident ®eld by the condition

expfÿi�"r�k�s� ÿ k�i�� ��r0 ��k
�i�
r? ��r0�g ' 2�: �61�

The transverse coherence length is determined by the second

factor. For a small narrow-band source, it is approximately

�j��k�i�r?=k�i��j ' �=�NA�, where (NA) is the angular extent of

the X-ray source. The longitudial coherence length is deter-

mined by the relative time delay of the radiation scattered

from different points in the crystal. If the difference in time

delay is longer than the average coherence length of the

incident radiation, the scattered waves become uncorrelated.

As indicated, that happens if the ®rst factor in (61) becomes of

the order of 2� when �r0 is comparable with the unit cell. As

the time delay is proportional to the momentum transfer

vector, j � k�s� ÿ k�i�, the scattering is always coherent at low

momentum transfers, corresponding to low resolution. The

diffraction becomes continuous when both the transverse and

the longitudinal coherence lengths become comparable with

the dimensions of the unit cell. Considering the variation of

the scattering vector j with scattering angle, we expect that at

high resolution the diffraction pattern broadens and at even

higher resolution the relevant Patterson vectors will be limited

to less than a unit cell.

An approximate picture of the equivalent electron density

can be given for two cases. One is an extended monochromatic

source, i.e. Bragg scattering using a convergent incident beam.

If the angular extent of the source is large enough that the

transverse coherence length is comparable with the unit-cell

dimension, the equivalent crystal is a row of atoms in the

direction of the incident beam and the scattered intensity is

the simple sum of the scattered intensities from different rows.

The other case is a well collimated incident beam with ®nite

frequency width. This could be categorized as narrow-band

Laue diffraction. The `longitudinal' coherence length is now

in the direction of the scattering vector, characterized by

�H;K;L� in reciprocal space. We obtain incoherence between

two unit cells when the fractional bandwidth of the incident

radiation is of the order of the resolution (in the proper units).

It can be expressed simply as j"""rj � j�H;K;L�j ' 1. At low

scattering angles, the equivalent crystal is a slab perpendicular

to the scattering vector. If the slab is thick enough, we recover

the usual picture of the Laue method, where the crystal selects

the proper scattering wavelength. As the scattering angle

increases, the equivalent crystal becomes thinner and thinner.

We expect, therefore, both a change in scattering angle

(DusÏek, 1994) and a decrease in wavelength selectivity.

Finally, the connection with the mutual-coherence function

can be made by substituting our radiation model, equation

(54), into expression (17) and ®nally evaluating equation (20).

The calculation is straightforward. As previously, we use scalar

®elds and complex notation. The mutual-correlation function

has `diagonal' terms, in which the radiators are considered one

at a time and `off-diagonal' terms where the different radiators

interfere. Only the diagonal terms will be presented here. The

off-diagonal terms are, in general, of comparable magnitude.

(In the case of almost monochromatic radiators, with a rela-

tively large frequency spread, the diagonal terms dominate.)

The result is

ÿ�i��r0; r00; T� � 1

�r�i��2
X

r

E 2
r

�!r

expfÿi�!rT ÿ k�i�r � �r00 ÿ r0��g

� exp ÿ�!r

2!r

���
� �

: �62�

Using the same assumptions that led to equations (60) and

(61), we obtain

ÿ�i��r0; r00; �r0 � ŝ=c�

� expfÿi��k�s� ÿ k�i�� ��r0�g 1

�r�i��2
X

r

E 2
r

�!r

� expfÿi�"r�k�s� ÿ k�i�� ��r0 ��k
�i�
r? ��r0�g

� exp ÿ�!r

2!r

�k�s� ÿ k�i�� ��r0
� �

: �63�

A comparison of (63) with (60), (61) and (20) reveals the

marked similarity of all our results.
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